Math Olympiad Problem `x^{x}=3^{27+2x}` . Find the Value of x
Solution
`x^{x}=3^{27+2x}`
We can rewrite the above equation as
`x^{x}=3^{27}.3^{2x}`
Now divide both side by `3^{2x}` we
`\frac{x^{x}}{3^{2x}}=\frac{3^{27}.3^{2x}}{3^{2x}}`
`\left( \frac{x}{3^{2}} \right)^{x}=3^{27}`
`\left( \frac{x}{9} \right)^{x}=3^{27}`
Now multiply `\frac{1}{9}` power on both sides
`\left( \frac{x}{9} \right)^{x \times \frac{1}{9}}=3^{27 \times \frac{1}{9}} `
`\left( \frac{x}{9} \right)^{\frac{x}{9}}=3^{3} `
if `a^{a} =b^{b} ` then a =b
`\frac{x}{9}=3`
x=27
Answer
0 Comments
if you are not getting it then ask i am glad to help